💰 Top 10 Richest People on the Planet


A few days back, I shared a plot that showed World’s Top 10 richest folks using Wikipedia data.

Sankey Instagram

I used Plotly Python to create the plot. Here is the snippet:

# full_nodeset is the set of nodes (person, country, company name)

# source is the list of items that are used as source (start to draw from here)
# target is the list of items that are used as target (stop to draw here)
# values is the list of numeric values to determine the flow
# colorlist is the list of colors for each source-target connection

#  Sankey Plot
fig = go.Figure(data=[go.Sankey(
    node = dict(
      pad = 15,
      thickness = 20,
      label = [f"{name}: ${find_networth(name)}B" for name in list(full_nodeset.values())],
      color = colorlist
    ),
    link = dict(
      source = source, 
      target = target,
      value = values
  ))])

fig.update_layout(title_text="2020: Ultra Rich People 🤑", font_size=12, width=900, height=900)
fig.show()

Let’s print out the data to help visualise how its being used by Sankey.

for src, tgt, val, clr in zip(
    [find_name(full_nodeset, idx) for idx in source],
    [find_name(full_nodeset, idx) for idx in target],
    values,
    colorlist
):
    print(f"{src} -> {tgt} -> {val} :: {clr}")

This is the output.

France -> LVMH -> 76.0 :: #40b7ff
Spain -> Inditex, Zara -> 55.099998474121094 :: #d23c3d
United States -> Amazon -> 113.0 :: #40b7ff
United States -> Berkshire Hathaway -> 67.5 :: #ffa500
United States -> Facebook -> 54.70000076293945 :: #40b7ff
United States -> Microsoft -> 98.0 :: #40b7ff
United States -> Oracle Corporation -> 59.0 :: #40b7ff
United States -> Walmart -> 163.10000610351562 :: #40b7ff
LVMH -> Bernard Arnault and family -> 76.0 :: #40b7ff
Inditex, Zara -> Amancio Ortega -> 55.099998474121094 :: #ffa500
Amazon -> Jeff Bezos -> 113.0 :: #d23c3d
Berkshire Hathaway -> Warren Buffett -> 67.5 :: #ffa500
Facebook -> Mark Zuckerberg -> 54.70000076293945 :: #40b7ff
Microsoft -> Bill Gates -> 98.0 :: #d23c3d
Oracle Corporation -> Larry Ellison -> 59.0 :: #40b7ff
Walmart -> Alice Walton -> 54.400001525878906 :: #40b7ff
Walmart -> Jim Walton -> 54.599998474121094 :: #40b7ff
Walmart -> S. Robson Walton -> 54.099998474121094 :: #40b7ff

Wealth Over the Years

One bubble seems to get bigger each year since 2015 😃

200020012002200320042005200620072008200920102011201220132014201520162017201820192020YearAl-Waleed bin TalalAlice WaltonAlice Walton*Amancio OrtegaAnil AmbaniBernard ArnaultBernard Arnault and familyBill GatesCarlos SlimCarlos Slim & familyCharles KochChristy WaltonChristy Walton & familyDavid KochDavid ThomsonEike BatistaHelen Walton*Ingvar KampradJeff BezosJim WaltonJim Walton*John Walton*Karl AlbrechtKarl and Theo AlbrechtKenneth ThomsonKushal Pal SinghLakshmi MittalLarry EllisonLarry PageLi Ka-shingLiliane BettencourtLiliane Bettencourt & familyMark ZuckerbergMasayoshi SonMichael BloombergMichael DellMukesh AmbaniOleg DeripaskaPaul AllenS. Robson WaltonS. Robson Walton*Sheldon AdelsonStefan PerssonTheo AlbrechtWarren Buffett💰💰 Ultra rich folks 💰💰20406080100120Networth (USD, Billion)
Instagram

alt.Chart(allDf).mark_circle(
    opacity=0.8,
    stroke='black',
    strokeWidth=1,
#     fill="purple"
).encode(
    alt.X("year", title="Year"),
    alt.Y("Name", title="💰💰 Ultra rich folks 💰💰"),
    alt.Size("networth", title="Networth (USD, Billion)"),
#     alt.Color("networth"),
    alt.Tooltip(["Name", "year", "networth", "Source(s) of wealth"]),
    color=alt.condition(alt.datum.networth >= 100, alt.value("orange"), alt.value("steelblue")),    
).properties(
    width=500,
    height=800
)

And this is the snapshot of the allDf dataframe Dataframe

Update: 01 Dec 2020

By the way, a lot has changed since then.

Mr Musk has made a grand entry to the list and TSLA shorts 🩳, oh well.


See also